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The judgment of an iterative solution o multaneous equations
properly entails more than the rate of convergence. An item of con-
cern is whether or not we can arrive at a solution point whose
approximate location ié known.

Let the '"region of influence'" of a given solution point be the
set of all starting values which (for a given iterative technique)
have that solution point as the limiting value of the iterationm.
Ideally, perhaps, we might desire that every starting point yield
some solution and that every region of influence be simply connected.

It is known that, for example, the Newton-Raphson technique is
a second order process with favorable rate of convergence when well-
started. It is also known that the regionsvof infiuence are not
normally simply-connected.

The present procedure was devised as part of a program for
studying methods of altering the regions of influence rather than

rates of convergence.

The equations considered can be linear or nonlinear. By using
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first order partial derivatives, there is created a technique which
has the Newton-Raphson quality of converging to every solution point
whose Jacobian is nonvanishing. The method is computationally
simpler than the Newton-Raphson method; it is, however, first order
rather than second order. An arbitrary function can be used para-
metrically.

The study is far from complete. The present approach seems
faulty in that in practice the convergence rate is too slow. Because

of this a method of accelerating convergence is included.

Description of-the Process

Let
(1) £,(X, Xpe ceox),  l<ig<n,

be real functions defined for an open region R. Let
X = [x1 Xy co xn]t denote a column matrix, and write
t
fi(xl, Xpy °°° xn) - fi(X). let Y = [y1 Y, yn] be a point of R

sucii that the following conditions are satisfied:

a, For 1l <1<n, £ (Y) =0 ;
- -1 3,
b. In a neighborhood of Y the partial derivatives e are
]

continuous (1 < i, j < n) ;

¢, For fi Y.

3

nonsingular at Y.

j(x% - —3—\fi(x), the n x n matrix J(X) = [fij(x)] is

Let the eigenvalues of {l/Sp(Jt(Y) J(Y))}Jt(Y) J(Y) be

n
Az, eee An. They are positive, and 2 A, = 1. Let them: be so

A
1=1 1

l’



ordered that Xi > Ay Let d(X) be a function over R arbitrary

except that it is continuous in a neighborhood of Y and except that
(2) 0 <d(Y) < 2/Al .

For 1 <ign define functions hi(X) by

n
(3) b, (x) = {d(®) Z £,00 £, (0}/5p(I® J®) .

2=1

Let H(X) = [0 (X) hy(®) =+ b (01, Let x(® -

k) (k) .., (kK),t
[x1 X, X 1.
The basic theorem can now be phrased-as follows:
If X(l) is "near enough"” Y and
%) (D) | () H(X(k)]

then lim X(k) =Y.

ko

Finding suitable functions d(X) is not elaborate. Since Al <1
unless n = 1, we may for d(X) use any positive constant not greatér
than two. 1In the final stages of iteration d(X)/Sp(Jt(X) J(X)} can
be replaced by a constant. Indeed, for some systems it may be prac~-
tical to choose d(X) as 2 Sp(Jt(X) J(X))/MaxR(Sp(Jt(X) J(X))} from
the start, thus simplifying computation.

A cautionary note seems in order. There can exist points Y,
resulting from the limit process (4), such that J(Y) is singular.

In that case it may not be that fi(Y) = 0 for all i. Consider the

example fl(xl, xz).= Xy + X, - 1, f2(xl’ xz) =X + X, = 2. Then



h1 = h2 and, for d(X) = 1, is xl/2 + x2/2 - 3/4. For the starting

values xl(l) = o and xz(l) = 8, we find xl(k) =0a/2 - 8/2 + 3/4 and

X = -a/2 + 8/2 + 3/4 for k > 2.

Linear Systems

We wish first to make an observation applicable to the general

case. By Taylor's expansion

n
£, = jzl SHCRICHER

where gl = [(y1 + exl - yl) R (yn + exn - yn)]t° Now let
t n

(5a) 833X = {d®/sp(37 0 I} ZZI Ea(® £44(8)

and let

(5b) G = [g;;M],  1<4,j<n.

Then clearly (see (4))
(6) X-Y-HX = (I-6E)EX-7Y)

The only use we want of the above in the present section is to
show that the: eigenvalues My of T - G(Y) are given by My = 1 - d(Y)li,

while if (2) holds

(7) l > un, > _l °

>
vl = M0 M

To see this, it is only necessary to observe that



(8) ¢(¥) = @dw/sp{at ) 1 IIT® M

and that d(Y) > O together with R > 0 guarantee y

i+l i+l Z Mg

while d(Y) < Z/Al means y, > -1 and 1 » o

Now for the linear case let

n
(9 fi(X) = jgl aij xj - bi

and, for convenience only, consider d(X) = §4 & being chcsen so that

it falls between zero and 2/A10 Solution of (9) is of course solution

of
(10) AY = B

= = oo t : _9 / = iy s
where A = [aij] and B = [b1 b2 bn] . Since ™™ fz(X) axi’ it is

i

a straightforward matter to see that
p t t, - abayaat
(1) X - HQEX) = {I - {§/Sp(A"A)}A A X + {d/Spla A)}AB.

Thus convergence-of’proéess (4) is guaranteed for the linear case
(see {1], pp.-161-170) since the eigenvalues of the ccefficient of X
in the right-member-of (11) are less in magnitude than 1.

It is true that if, say,.é =1, and 6/Sp(AtA) is used as a
constant multiplier, then even relatively large inaccuracies in the
computation- of Sp(AtA) have no influence on' the theoretical accuracy
of the iteration.  However, it is alsoc known that AtA‘is more iil-

-conditioned than A.  This should be borne in mind in using the



process.

The Case n = 1. For n = 1, the process reduces to the solution

of f(y) = 0 by the technique
(12) x(k+l) = x(k) - d(x(k))f(x(k))/f'(x(k))

where d(y) = § is a positive number less than two. For the choices
d(x) =1, dx) = [f'(x)]z/{[f'(x)]2 - f(x)f'"(x)} and related ideas
see [2], p. 24 et seq.

To establish convergence for a d(x) chosen in accor&ance with

the present discussion, let R, be an interval in R such that,

1
Rl,d(x) f'(y + 6x - y)/f'(x) = § + €(x) where 6 is such that

£'(y + 0% - y)(x - y) is £(x) - £(y) and where |e(x)| < u - |1 - &}

while 0 < y < 1. Let x1) (k1)

|x(k)

be in R1° Then lx

-yll1 -6 - e(x(k))l which in turn does not exceed u|x

- y| is
(k) _

y

°

Thus Ix(k+l) -y| < uklx(l) - y| and convergence occurs.

Now suppose d(y) = 1. Then convergence occurs as before, but
following a known techniyue {see [3], p. 448), can he shown to be

quadratic. Thus let d'(x) and £''(x) be continuous in.R.. = Then,

1

(ktl) _

expanding f(y) in powers of y - x, we are led to x y =

0 y - d(x(k)){f'(x(k))(x(k)_ y) - fvv(n(k))(x(k)_ y)Z/z}/f.(x(k))o
mhen it 1 - a(x®) = at) - 4(x®) = @' (£P)(y - x), £y

(x9- 3 2a(x e (1) - 207 (e (x )1/ 280 (x)).

The Case n = 2. In this instance the characteristic equation

for I - G(Y) is



u2 - (2 -8)+1-56+ 62 w2 =0

(13)

w? = det(3t () a3 ) Hsp(35 @ 32, 5 =am .

Following the procedure in [3], p. 450, we have asymptotic stability

if and only if

(14) | 2-6| <2-8+ 82 w2 <2,

Write det(Jt(Y) J(Y)) as a Then a,, and a,., are

2
812 - 11 22

11 %22 ~
positive. It follows that

2 2

Zagy apylagy +ayy)t < 1/4

2
0 < (ay) 2y - a5 )/ (ay) +ay)

and equality can only occur between the last two members if a;; = @

This means wz < 1/4 and wz = 1/4 if and only if J(Y) is a scalar

22°

multiple of a unitary matrix.

Reverting to (14) it is seen that 0 < § < l/w2 is necessary.

Since 4 - 25 + 62 w2 >.0 unless § is between (1 ~ V1 - 4w2)/m2 and

1+ /I_:_ZEQ)/wZ (while this last equals or exceeds l/wz) we have
asymptotic stability if and only 1f 0 < § < (1 - /E‘Z'ZB?)/wzc When
§ = (1 ~ /I_:—ZBZ)/(ZwZ), I - G(Y) is singular... Since
1+ /T 502 /(202 < (1 - T =%a2)/u? 1f and only if o > 2/9,
when w2 > 2/9 and 6§ = (1 + V1 = 4w?)/(2w2), I - G(Y) is again
singular,

It will be shown in the next section that when wz = 1/4 and
§ = 2 we have quadratic convergence. Since 4 il/m2 always, it may

be that d(X) = 2 is in some sense a 'best' choice if no detailed



knowledge of the functions 1s at hand.

Proof of Convergence.

Consider now (see (4))

Dy 2 Ly og(x®)

Using (6) this becomes
Dy o (1 - ex®))(x® - )

Let Rl be a spherical region in R with Y as center, and small enough

that the functions fij(X) and d(X) are continuous in R As in

1°
establishing (7), let the eigenvalues of I - G(Y) be My and let & be

such that 1 - ¢ = mgx(uiz). The numbers uiz are the eigenvalues of
i

(1 - G(Y))C(I - G(Y)), and 1 - ¢ z_uiz, Let the eigenvalues of

(1-6)(1 - 6®) be v, (0.

n :
Let the characteristic polynomial of the uiz be 2 aiu21 and
i=0
n ]
that of the vi(X) he z bi v'. Because b, - a{l can be made as
i=0 - -

small as desired by using a proper spherical subregion of Rl’ there
is in Rl a spherical subregion R2 having Y as its center and such
that, for X in R2, Ivi - uizl < €/2. 1In particular, max(vi) <1 - €ef2,

By a well-known theorem (see [l], p. 65)
[X(k) _ Y)t(I _ G(X)(k)]t(l _ G(X(k)))(x(k) -¥) <

max (Vi)(x(k) _ Y)t(x(k) -y <q- s/Z)(X(k) _ Y)t(x(k) - 1).
1

Then (x(k+1) _ Y)t(x(k+1) SY) < @ - E/2)(}((‘&) _ Y)t(x(k) - v),




and by recursion

(k1)

||x 1] < @- /¥ xPo )

Thus convergence occurs. Here ||X(k+1)_

Y|| denotes the distance
norm.

Finally it is. shown that under stringent. conditions the: conver-
gence is quadratic. Let J(Y) be a scalar multiple of an orthogonal
matrix. Assume in addition that the first order derivatives of d(X)
-and the second order derivatives of fl(X), 1 < 2 < n, are continuous
in a neighborhood of Y. Require also that § = n. Since in this
instance all the eigenvalues Ay are equal, we have

d(Y) =6 =n < 2/)\l = 2n. Thus convergence occurs and

X(k) - H(X(k))(see (4)) has meaning.

- 32
Write di(X) for Bxi d(X) and flij(x) for axiaxj fZ(X)' Then
n
d(X) = § + rzl dr(g)(xr - yr)
and, since fz(Y) =0
n n
0=f (X)+ rzl £.X0G, -x) +1/2 ] §=1 s, = v ) (x -y ).

First replace the functions fz(x) in X - Y - H(X) by their equiva-
lents above. The result, after dropping the quadratic terms, is

X - Y - {(dX)/sp(3°(®) 3(X))15(X) J(X) (X-Y). Now replace d(X) by

n
n+ ) d_ () (x_ - y.). The result, after dropping the quadratic
r=1



10

terms, is
X - Y- {o/8p(3"®) 30)1® 3@ ®-1) .

Next in Jt(X) J(X) -replace, in the off diagonal terms, frs(x)

n

by er(Y) + tzl frst(rlrs)-(xt - yt). Because J(Y) is a scalar multi-

ple of an orthogonal matrix, there result only quadratic and cubic

terms in (xi - yi) for these components. There remains to consider
(15) X - Y - {1/5p(3°(X) J(X))}C(X) (X-Y)

where C(X) is a diagonal matrix whose diagonal entry ci(X) is

Now rephrase (15) as {1/8p(J%(X) J(X))}H(E(X) - c(X))(X - ¥)
where E(X) is a diagonal matrix whose diagonal entry ei(X) is

SP(Jt(X) J(X))° In E(X) - C(X) replace each function fi (X) by the

3
Tavlor's expansions used in arriving at (15). The result is a
diagonal matrix which is made up of linear and quadratic terms in
the X~ ¥y This is so because J(Y) is a scalar multiple of an
orthogonal matrix.

In final consequence, X -~ Y - H(X) is seen to contain only

terms which are cubic or quadratic in the Xy~ ¥y

Improvement in Asymptotic Rate of-Convergence

It was found in practice that process (4) converged slowly.

Thus it was modified in an attempt to improve the asymptotic rate of




11

convergence.

We start by defining

dO

- 75 Jx)
Sp(J"(X) J(X))

E(X) =

where J(X) and Sp again denote the Jacobian matrix and spur respec-

tively. The new process may now be stated as

L) ()

(16) x® _omx®y T ®y gx®)
Then clearly

(17) X - Y - 2H(X) + G(X) H(X)

(I-26(X) +6(X) G(X)) (X - 1)

where G(X) is defined by (5).

For the linear case,.E(X) G(X) and (17) becomes
(18) X - Y- 2H(X) + 6(X) HX) = (I - 6(X) )2 X - 1)

As before let d(X) = 8§ where § is constant and consider a solution of

(10). We have from (18)

(19) X - Y - 2H(X) + G(X) H(X) = (I - 5t Atay? x
Sp(A"A)
+ (21 —-———QE—— Ata) ——-QE—— AtB
Sp(ATA) ~ Sp(A”A)
Define M to be (I - 8 AtA) which is the coefficient of X in the
t
Sp(ATA)

right member of (11). Then M2 is the coefficient of X in the right

member of (19). If the eigenvalues of M are Hys the eigenvalues of
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M2 are uiz. Since luil <1 (see (7)), then uiz < 1 and we are
guaranteed that process (16) converges for the linear case.

The asymptotic rate of convergence of M (see [4], p. 67) is

defined as
(20) Ro (M) = - 1n (p(M))

where p(M) is the magnitude of the largest eigenvalue of M. Denote
p(M) by u, then p(MZ) is u2 and R (M2) = 2 Re (M), Thus the
asymptotic rate of convergence of process (16) is twice that of
process (4) for the linear case.

For the non-linear case, we consider (6) and (17). Let Bi and
A\ denote the eigenvalues of I - G(X) and I - 2G(X) + G(X) G(X)
respectively and as before let My denote the eigenvalues of I - G(Y).
Let each eigenvalue be so indexed -that Bi is approximated by'ui and

2
AT

Now let 2 aiui’z biBi,and'EVCﬂ'i represent the characteristic

polynomials whose zeros are Hyo Bi and"yi respectively., The
coefficient bi is a‘'continuous function of the elements of G(X) and
|bi - ai| can be made as small as desifed by choosing a proper sub-
region R3 in R. - There is a subregion in R3 having Y as its center

such that |Bi - u < ¢ provided X is in this region.

i

. . 2
In a similar manner it can be shown that |Yi -y | < ¢ by

similarly choosing a proper subregion of R3.
Now Bi and‘yi can be made arbitrarily close to My and Hy

respectively by choosing the proper subregion of R. With the
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condition that piz < ny it follows that the asymptotic rate of
convergence for process (16) is double that of process (4).
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